
'

&

$

%

Full-Text Querying in XML

A Little Bit of Standards and Lot’s o’ Research

Sihem Amer-Yahia
AT&T Labs–Research

EDBT Summer School – September 6th-10th, 2004

1

'

&

$

%

Motivation

1. XML is able to represent a mix of structured and unstructured

(text) information.

2. Examples of XML repositories are: IEEE INEX (INitiative for

Evaluation of XML retrieval) data collection, Shakespeare’s

plays, DBLP and the Library of Congress collection.

3. Existing query languages for XML are very limited when

querying text.

4. A lot of activity around the topic of extending XML query

languages with full-text search capabilities: INEX (IR effort),

W3C (DB effort). Bring together the two communities.

2

'

&

$

%

Outline

1. Full-Text Search in XML:

• Motivation and Related Work.

• TeXQuery and the Standards.

• Demonstration.

2. Research in XML Full-Text Search:

• PIX: Phrase matching In XML.

• FleXPath: Approximate Matching on Structure and Text.

• Open research problems.

3. Bibliography

3

'

&

$

%

TEXT TEXT

. . .

. . .

BookCollection

. . .sectionauthortitle

book book

TEXT

XPath/XQuery

Querying an XML document in DB and in IR

IR engines

4

'

&

$

%

Related Work

well−established
measures (TF*IDF)

* Powerful scoring using

* Limited use of structure

SCORINGQuerying

Languages/
Tools

matching (starts−with,
contains, ...)

algorithms

(at the level of words)

composable full−text
search primitives

for both structure and
text

* Fine−grained data model

* Powerfull and fully−

* Efficient query evaluation

* Limited sub−string

* Coarse data model

* Efficient indices and

* Powerful text search
* Not fully composable
* "incomplete"

* None

STRUCTURE TEXT

(Google,XIRQL,
ELIXIR, XXL,
JuruXML, ...)

XQuery 1.0
XSLT 1.0

XPATH 2.0

Full−Text
Search in XML

IR Engines

scoring purposes

primitives

and XQuery to specify
search context and return
clause

* Limited path expressions
* Dynamic context evaluation
* Structure used mainly for

* Powerful tree navigation

* Powerful "return" clause

* Leverage power of XPath
and structure

account for structure

* Scoring on both text

* Extend TF*IDF to

5

'

&

$

%

Full-Text Search in XML

Context expression: defines nodes where search occurs: e.g.,

book chapters.

Return expression: defines document fragments that are returned

to users: e.g., book title and authors.

Search expression: defines Full-Text search conditions: e.g.,

Boolean, proximity, stemming.

Score expression: defines an expression that might be used to

score returned fragments.

6

'

&

$

%

Full-Text Queries

<book id="1000">

<author>Elina Rose</author>

<content>

<p> The usability of software measures how

well the software provides support for

quickly achieving specified goals. </p>

<p> The users must be and feel well-served. </p>

</content>

</book>

• //book [./content ftcontains "software" &&

"usability" with stems && ! "Rose"]

• //book [./chapter ftcontains "usability" &&

("software" || "goals") distance 12]

7

'

&

$

%

XQuery in a Nutshell

• Functional language.

• Input/Output: sequence of items (atomic types, elements,

attributes, processing instructions, comments, ...).

• Fully compositional.

• Variable binding.

• XPath core navigation language.

• Element construction (return clause).

8

'

&

$

%

XQuery FLWOR Expression

Find the title and price of books on usability and sort books from
the cheapest to the most expensive:

for $item in //books/book

let $pval := $item/metadata/price

where fn:contains($item//content,”usability”)

order by $pval ascending

return <result>

{$item/title}

<price>

{$pval}

</price>

</result>

Limited sub-string operations: fn:start-with(), fn:end-with().

9

'

&

$

%

Full-Text Search Design Goals

• Identify basic Full-Text search primitives natural to querying

XML.

• Primitives should be composable with each other to express

arbitrarily complex Full-Text conditions.

• Seamlessly integrate regular XQuery with Full-Text search to

query over both structured and full-text data. Non-trivial

because structured XML queries operate on XML nodes, while

Full-Text queries operate on keyword search tokens and their

positions within XML nodes.

• Avoid any extension to the XPath and XQuery data model.

• Define ranking in order to support threshold and topK queries.

10

'

&

$

%

Alternative Solutions: Functions

word-distance(contains($n,"usability")

and

contains($n,"software"),10)

• ”contains” returns Boolean values. Not enough to compute

distance.

• Extra information about search tokens and their positions

needs to be ”carried around” with the Boolean value.

• Problem: Fundamental extension to the XQuery data model,

violating design goals.

11

'

&

$

%

Alternative Solutions: Sublanguage

contains($n,

"usability and software distance 10 words")

• Isolate Full-Text search expresson in a single contains

function as in SQL/MM, an extension to SQL.

• No extension to XQuery data model is needed.

• Problem: Full-Text search specified in an uninterpreted string

that is opaque to the rest of the XQuery language.

• Solution: Make string conform to a well-defined grammar and

define its semantics.

12

'

&

$

%

TeXQuery in a Nutshell

• Provides a set of powerful Full-Text search primitives called

FTSelections.

• FTSelections are fully composable.

• Relies on a formal data model called FullMatch.

• Permits scoring and ranking.

13

'

&

$

%

TeXQuery Primitives

• FTContainsExpr::= ContextExpr ”ftcontains” FTSelection

returns true if at least one node in ContextExpr satisfies

FTSelection.

• FTScoreExpr::= ContextExpr ”ftscore” FTWeightedSelection

returns a sequence of scores. Provides access to fine-grained

ranking (e.g., threshold and top-k.)

14

'

&

$

%

FTContainsExpr: FTSelection

FTContainsExpr ::= ContextExpr ”ftcontains” FTSelection

FTSelection ::= FTStringSelection |

FTAndConnective |

FTOrConnective |

FTNegation |

FTMildNegation |

FTOrderSelection |

FTScopeSelection |

FTDistanceSelection |

FTWindowSelection |

FTTimesSelection |

FTSelection (FTContextModifier)*

15

'

&

$

%

FTContainsExpr: FTContextModifier

FTSelection ::= FTSelection (FTContextModifier)*

FTContextModifier defines the FTS environment, which can

modify the operational semantics of FTSelection such as

stemming, stop-words, diacritics and case.

FTContextModifier ::= FTCaseCtxMod |

FTDiacriticsCtxMod |

FTSpecialCharCtxMod |

FTStemCtxMod |

FTThesaurusCtxMod |

FTStopWordCtxSpec |

FTLanguageCtxMod |

FTRegExCtxMod |

FTIgnoreCtxMod

16

'

&

$

%

FTContextModifiers: Grammar

FTThesaurusCtxMod ::= "with"? "thesaurus" Expr

| "without" "thesaurus"

FTStopWordsCtxMod ::= "with" "additional"?

"stopwords" Expr ?

| "without" "stopwords" Expr?

FTLanguageCtxMod ::= "language" Expr

17

'

&

$

%

FTContainsExpr Examples

books//title [. ftcontains ("usability") case

sensitive with thesaurus "synonyms"]

books//content [. ftcontains ("usability" &&

"software") with stopwords window at most 3]

books//title [. ftcontains ("Utilisation" language

"French" with stems && "software")]

books//content [. ftcontains ("usability" ||

"web-testing") with special characters]

18

'

&

$

%

Integration with XQuery

• Simple Example:

for $book in

books/book ftcontains "usability" with stems &&

"software" && !"Rose"

return <hit>{$book}</hit>

• Top-K Example:

for $hit at $i in

for $book in books//section ftcontains "usability"

let $score := $book ftscore "software" weight 0.7

order by $score descending

return <hit>{$book}<score>{$score}</score></hit>

where $i < 20

return {$hit}

19

'

&

$

%

TeXQuery Data Model

• XQuery expressions take sequence(s) of nodes as input and

evaluate to a sequence of nodes.

• FTSelection takes FullMatch(es)as input, and evaluates to a

FullMatch in the FTS data model.

• FullMatch captures linguistic token positions, and other

information required for full composability of FTSelections.

20

'

&

$

%

XQuery and TeXQuery Composability

XQuery
Expression

Evaluate to
a FullMatch

Evaluate to a
sequence of items

Convert a sequence of
items to a FullMatch

TeXQuery Expression
Convert a FullMatch to
a sequence of items

Expression
FTSelection

21

'

&

$

%

Query Evaluation Tree

FTStringSelection FTStringSelection FTStringSelection

FTOrderSelection

FTAndConnective

FTDistanceSelection

FTContains

FullMatch

FullMatch

FullMatch

True/False

searchToken searchToken searchToken

FullMatch FullMatch FullMatch

22

'

&

$

%

TeXQuery Example

<book(1) id(2)="1000(3)">

<author (4)>Elina(5) Rose(6)</author(7)>

<content(8)>

<p(9)> The(10) usability(11) of(12) software(13)

measures(14) how(15) well(16) the(17)

software(18) provides(19) support(20) for(21)

quickly(22) achieving(23) specified(24) goals(25)

</p(26)>

<p(27)> The(28) users(29) must(30) be(31) and(32)

feel(33) well-served(34).

</p(35)>

</content(36)>

</book(37)>

//book ftcontains ”software” && ”usability” with stems

23

'

&

$

%

”software”

<book(1) id(2)="1000(3)">

<author (4)>Elina(5) Rose(6)</author(7)>

<content(8)>

<p(9)> The(10) usability(11) of(12) software(13)

measures(14) how(15) well(16) the(17)

software(18) provides(19) support(20) for(21)

quickly(22) achieving(23) specified(24) goals(25)

</p(26)> ...

SimpleMatch SimpleMatch

FullMatch

StringInclude
Token: software

StringInclude
Token: software

Pos:13 Pos:18

24

'

&

$

%

FTStringSelection

function fts:FTStringSelection (

$searchContext as node(),

$ctxModifiers as fts:FTctxModifiers,

$searchToken as fts:TokenInfo,

$queryPos as xs:integer) as fts:FullMatch

{ <FullMatch>

let $token_pos := fts:getTokenInfo($searchContext,

$matchOptions,$searchToken)

for $pos in $token_pos

return <match> <stringInclude queryPos="$queryPos"

queryString="$searchToken/@word">

$pos

</stringInclude>

</match>

</FullMatch>

}

25

'

&

$

%

”usability” with stems

<p(9)> The(10) usability(11) of(12) software(13)

measures(14) how(15) well(16) the(17)

software(18) provides(19) support(20) for(21)

quickly(22) achieving(23) specified(24) goals(25)

</p(26)>

<p(27)> The(28) users(29) must(30) be(31) and(32)

feel(33) well-served(34).

</p(35)> ...

Pos:29

SimpleMatch

StringInclude
Token: users

StringInclude
Token: usability

SimpleMatch

FullMatch

Pos:11

26

'

&

$

%

”usability” with stems && ”software”

<p(9)> The(10) usability(11) of(12) software(13)

measures(14) how(15) well(16) the(17)

software(18) provides(19) support(20) for(21)

quickly(22) achieving(23) specified(24) goals(25)

</p(26)>

<p(27)> The(28) users(29) must(30) be(31) and(32)

feel(33) well-served(34).

</p(35)> ...

Token: users

Pos:18 Pos:29 Pos:13 Pos:29 Pos:18

SimpleMatchSimpleMatch

StringInclude
Token: users

StringInclude
Token: software

StringInclude
Token: usability Token: software

StringInclude

Pos:11

StringInclude StringInclude
Token: software

Pos:13Pos:11

StringInclude
Token: usability

StringInclude
Token: software

SimpleMatch SimpleMatch

FullMatch

27

'

&

$

%

FTAndConnective

function fts:FTAndConnective (

$fullMatch1 as fts:FullMatch,

$fullMatch2 as fts:FullMatch)

as fts:FullMatch

{ <FullMatch>

{ for $sm1 in $fullMatch1/match,

$sm2 in $fullMatch2/match

return

<match>

$sm1/* $sm2/*

</match>

}

</FullMatch>

}

28

'

&

$

%

Related Work

• SQL/MM extends SQL with primitives on text, images and

spatial data. Boolean keyword retrieval [FKM00],[NDM00].

Keyword similarity [CK01],[XXL],[XIRQL:FG01]. Proximity

distance [Inquery:sigir95],[SQL/MM:sigrecord01]. Relevance

ranking [XQueryIR:webdb02],[FG00],[HTK00],[TW00].

Dynamic context [SKW01],[XRank:GSB+03],[TIX:AYJ03]

• All support only a few FT search primitives at a time and none

develops a fully compositional model for FT search.

29

'

&

$

%

A Quick Summary of W3C Effort

• Full-Text Task Force (FTTF) started in Fall 2002 to extend

XQuery with full-text search capabilities: IBM, Microsoft,

Oracle, the US Library of Congress.

• FTTF documents published on February 14, 2004 (public

comments are welcome!):

http://www.w3.org/TR/xmlquery-full-text-use-cases/

http://www.w3.org/TR/xmlquery-full-text-requirements/

• XQuery Full-Text highly influenced by TeXQuery.

• Published a working draft describing the syntax and semantics

of the XQuery Full-Text on July 9, 2004 at:

http://www.w3.org/TR/xquery-full-text/

30

'

&

$

%

FTTF Use Cases Document

http://www.w3.org/TR/xmlquery-full-text-use-cases/

• Use Case ”ELEMENT”: Words and Phrases

• Use Case ”WILDCARD”: Word Wildcard

• Use Case ”STEMMING”: Word Stemming

• Use Case ”THESAURUS”: Thesauri, Dictionaries, and Taxonomies

• Use Case ”STOP-WORD”: Ignoring and Overriding Stop Words

• Use Case ”BOOLEAN”: Or, And, Not

• Use Case ”DISTANCE”: Distance (Proximity, Window)

• Use Case ”IGNORE”: Ignoring Markup

• Use Case ”COMPOSABILITY”: Full-Text and XQuery

• Use Case ”SCORE”: Scoring and ranking

31

'

&

$

%

XQuery Full-Text Demo

The GalaTex Prototype

32

'

&

$

%

PART 2: Research in XML Full-Text

• In IR:

– Ranking for XML.

– Querying both structure and text: returned results

granularity.

• In DB:

– Indices and algorithms for phrase matching.

– Approximate querying of both structure and text:

algorithms to evaluate top-K queries efficiently.

• Implementation on top of an XPath/XQuery engine and an IR

engine.

33

'

&

$

%

PIX: Phrase Matching in XML

<section>

<title> Web site Testing </title>

<p> Software <footnote> The word software

designates programs and tools </footnote>

usability measures how well the

software provides support to users.</p>

</section>

• Two kinds of markup: tags or annotations. Affects contiguity

of words in phrase.

• Ignore annotation <footnote>.

book//section[. ftcontains "software usability"

case insensitive ignore content footnote]

34

'

&

$

%

PIX Problem Statement

• Given a (pre-processed) XML document, and

• Proximity query specified by:

– context node tags C

– list of phrase words W = [w1, . . . , wq]

– ignore-tag tags T

– ignore-annot tags A

– proximity threshold K

• Identify all (context node, witness list) pairs in document

35

'

&

$

%

PIX Contributions

• Dynamic specification (i.e., at query time) of phrase to match

& markup to ignore.

• Inverted indices on words & XML tags built off line.

• Phrase (contiguous words in order)/proximity (within k words

and tags), while ignoring markup during query evaluation.

• Implementation is fully integrated into XQuery: combines

structure matching with phrase matching.

• Carry extensive experiments.

36

'

&

$

%

PIX Indices

(Start, End) numbering of XML elements and text.

<section [1,24]>

<p [2,23]> Software [3] <footnote [4,12] >

The [5] word [6] software [7] designates [8]

programs [9] and [10] tools [11]

</footnote> usability [13] measures [14]

how [15] well [16] the [17] software [18]

provides [19] support [20] to [21] users [22].

</p>

</section>

37

'

&

$

%

INL and PIX Algorithms

<section [1,24]>

<p [2,23]> Software [3] <footnote [4,12] >

The [5] word [6] software [7] designates [8]

programs [9] and [10] tools [11]

</footnote> usability [13] measures [14]

how [15] well [16] the [17] software [18]

provides [19] support [20] to [21]users [22].</p>

</section>

Lsection Lfootnote Lsoftware Lusability

[1,24] [4,12] [3,3] [13,13]

[7,7] [22,22]

[18,18]

• INL: Build B-tree on Start and End positions for probing.

• PIX: Sort-merge akin to structural joins.

38

'

&

$

%

Experiments: Applicability of Known Results

• No context nesting, no ignored markup

– akin to relational joins

• | Lw1
|�| Lw2

|

– INL is substantially better

• | Lw1
|∼| Lw2

|

– PIX is superior

39

'

&

$

%

Experiments: Exploring Variability

Vary nesting of context nodes and annotations

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

Nesting depth of annotations

"PIXall-wits"
"INLall-wits"

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

Nesting Depth

"high-PIXall-wits"
"high-INLall-wits"
"low-PIXall-wits"
"low-INLall-wits"

• PIX is independent of nesting depth, INL increases linearly

– repeated index probing for nested context nodes

40

'

&

$

%

PIX Architecture

PIX

Phrase to match:user
input

GALAX

Context query:

XQuery

Query results

Ignored Tags:

FunctionResult

+
Phrase Matching

Ignored Annotations:
Query Generation

Result Highlighting

41

'

&

$

%

FleXPath Motivation

1. Two compelling paradigms for querying XML documents:

• Database-style query languages: XPath provides powerful

primitives to navigate in document structure.

• IR-style querying: Keyword/full-text search provides

powerful search primitives at the fine level of element and

attribute content.

2. Study query evaluation and scoring challenges that arise when

combining these two paradigms.

42

'

&

$

%

FleXPath Basic Ideas

• Facts: XPath has exact match semantics. Keyword search is

based on approximate matching.

• Goal: Leverage XPath in specifying the search context and, at

the same time, not suffer from the consequences of the exact

match semantics of XPath.

• Idea: Treat queries on structure as a template and look for

answers that best match the template and the full-text search.

• Consequence: If input document satisfies XPath expression

exactly, it is returned. If input document satisfies expression

partially, it might be returned with a lower score.

43

'

&

$

%

FleXPath Contributions

1. Formalize query relaxation on structure that is relevant to

keyword search.

2. Develop a query semantics that consistently extends classical

semantics of queries without full-text search.

3. Define primitive operators to span the space of relaxations.

4. Study properties of ranking schemes that combine structure

and text and propose ranking schemes.

5. Develop efficient algorithms for answering top-K queries.

6. Carry experimental evaluation.

44

'

&

$

%

Queries in FleXPath

XPath expressions where a predicate might call the fn:contains

function which looks for occurrences of specified keywords. In

general, fn:contains can be any TeXQuery expression.

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

��

��� ��� ��� ���

��� ���

$2

$1

$3 $4

//article [./section [./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

Q1

45

'

&

$

%

Relaxation Example

��� ���

��� ��� � �� �� �� �

��

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($2, "XML" and "streaming")

	
	 �
�

�
�

 �
� �
�

�
� �
�

$2

$1

$4$3

//article [./section[./algorithm and

Q2

./paragraph and . contains ("XML" and "streaming")]]

46

'

&

$

%

Relaxation Example

��� ���
�� � �� �

��� ���

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains($4, "XML" and "streaming")

	

��

�
 ���
��

$1

$2

$4

$3

//article [.//algorithm and ./section [./paragraph [

Q3

. contains ("XML" and "streaming")]]]

47

'

&

$

%

Relaxation Example

��� ���
�� � �� �

��� ���

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains($2, "XML" and "streaming")

	

���
�

��
��

//article [.//algorithm and ./section [./paragraph and

$1

$2

$4

$3

Q4

. contains ("XML" and "streaming")]]

48

'

&

$

%

Relaxation Example

��� ���
�� � �� �

��� ���

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

($1.tag = article) &
($2.tag = section) &
($4.tag = paragraph) &
contains ($2, "XML" and "streaming")

	 	

� �� �� �� �

� �� �

$1

$2

$4

//article [./section [./paragraph and

Q5

. contains ("XML" and "streaming")]]

49

'

&

$

%

Relaxation Example

��� ���
�� � �� �

��� ���

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

contains ($1, "XML" and "streaming")
($1.tag = article) &

	
 $1

//article [. contains ("XML" and "streaming")]

Q6

50

'

&

$

%

Logical Expression of Q1

��� ���

��� ��� � �� �� �� �

��

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

pc($1, $2) ∧ pc($2, $3) ∧ pc($2, $4) ∧ $1.tag = article ∧

$2.tag = section ∧ $3.tag = algorithm ∧ $4.tag = paragraph ∧

contains($4, “XML” and “streaming”).

51

'

&

$

%

Our approach for Relaxation

1. Compute query closure using inference rules below:

pc($x, $y) ` ad($x, $y)

ad($x, $y), ad($y, $z) ` ad($x, $z)

ad($x, $y), contains($y, FTExp) ` contains($x, FTExp)

2. Drop predicates.

3. Compute query core (unique).

52

'

&

$

%

Relaxations Definitions

Let Q = (T, F) be a TPQ, C be its closure, and S ⊂ C be a set of

structural predicates.

Definition 1 [Structural Relaxation] A structural relaxation of

Q is any query C − S, provided (i) C − S is not equivalent to C

and (ii) the core of C − S is a tree pattern query.

Definition 2 [contains-Relaxation] Let contains($i, FTExp) be

a predicate in F , such that $i is not the root of T . Then

Q′ = (T, F ′), where F ′ is identical to F except

contains($i, FTExp) is replaced by contains($j, FTExp), where

$j is an ancestor of $i in T , is a contains-relaxation of Q.

53

'

&

$

%

Query Closure of Q1

��

��� ��� � �� �� �� �

��

$2

$1

$3 $4

//article [./section[./algorithm and
./paragraph [. contains ("XML" and "streaming")]]]

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains ($4, "XML" and "streaming")

pc($1, $2) ∧ pc($2, $3) ∧ pc($2, $4) ∧ $1.tag =

article ∧ $2.tag = section ∧ $3.tag =

algorithm ∧ $4.tag = paragraph ∧

contains($4, “XML” and “streaming”) ∧ ad($1, $2) ∧

ad($2, $3) ∧ ad($2, $4) ∧ ad($1, $3) ∧ ad($1, $4) ∧

contains($2, “XML” and “streaming”) ∧

contains($1, “XML” and “streaming”).

54

'

&

$

%

Relax Q1 to Q3

Structural relaxations must be defined using the closure of a TPQ.

Q3 can be obtained only from closure of Q1.

($1.tag = article) &
($2.tag = section) &
($3.tag = algorithm) &
($4.tag = paragraph) &
contains($4, "XML" and "streaming")

��� ���
������

��� ���
��� ���

$1

$2

$4

$3

//article [.//algorithm and ./section [./paragraph [
. contains ("XML" and "streaming")]]]

pc($1, $2) ∧ pc($2, $4) ∧ ad($1, $3) ∧ $1.tag = article ∧

$2.tag = section ∧ $3.tag = algorithm ∧

$4.tag = paragraph ∧ contains($4, “XML” and “streaming”).

Core of C − {pc($2, $3), ad($2, $3)}.

55

'

&

$

%

Spanning Relaxations

• 1. Axis Generalization (γ)

2. Leaf Deletion (λ)

3. Subtree Promotion (σ)

4. “contains” Promotion (κ)

• One could consider more relaxations that can be represented in

our framework.

Theorem 1 [Soundness and Completeness] : Let Q be a TPQ.

Every query that is obtained by applying a composition of one or

more of the operators γ, λ, σ, κ applied to Q is a valid structural or

contains relaxation. Every valid relaxation of Q can be obtained by

finitely many applications of these operators to Q.

56

'

&

$

%

Ranking Schemes

1. Structural score: reflects how well an answer structurally

matches the original query.

2. Keyword score: reflects the relevance of an answer to the

full-text expression.

3. Answer score: reflects the relevance of a query answer to the

original query. Obtained using a computable arithmetic

function that combines the structural and the keyword scores.

4. Different from existing content and structure ranking schemes

in IR that rely on pre-specified XML fragments.

57

'

&

$

%

Properties of Ranking Schemes

Theorem 2 [Good Ranking Schemes] : Let Q be a TPQ, wQ a

function that associates a weight with each predicate in Q, and f

be an aggregate function. Suppose the score of each answer t to

query Q or one of its relaxations is computed by the ranking

scheme: f({{wQ(p1), ..., wQ(pk)}}), where p1, ..., pk are the

predicates satisfied by the answer t and {{...}} denotes a multiset.

Then the ranking scheme is order invariant.

Aggregate function used may be arbitrary – i.e., distributive (like

sum), algebraic (like average), or holistic (like median).

58

'

&

$

%

A Specific Ranking Scheme

1. Predicate penalty associated with each predicate p in C

measures how much context an answer loses by not satisfying

that predicate.

2. Penalty of relaxing pc to ad :

[#pc(ti, tj)/#ad(ti, tj)] × wQ(pc($i, $j))

3. Penalty of dropping ad($i, $j):

[#ad(ti, tj)/(#(ti) × #(tj))] × wQ(ad($i, $j))

4. Penalty of dropping contains($i, FTExp):

[#contains($i, FTExp)/#contains($l, FTExp)]×

wQ(contains($i, FTExp))

59

'

&

$

%

FleXPath General Architecture

(structural scores)

(possibly with structural scores)

answers with
keyword scores

contains

predicates
structural

context nodes

Query
User

Results
Query

 predicates

Using Relaxations
Generate Queries

IR engine

XPath engine

Combine
Nodes&Scores

60

'

&

$

%

Algorithms: Challenges

1. Leverage off-the-shelf XPath and IR engines.

2. Use any ranking scheme. In practice, keyword and structural

scores may result from different engines.

3. Optimize repeated computation due to relaxations.

4. Optimize cost of (re)sorting answers due to scoring.

5. Optimize number of intermediate query answers to produce

top-K.

6. All our algorithms assume that structural conditions are

evaluated before any contains predicate.

61

'

&

$

%

Three Algorithms

1. Rewriting-based algorithm (DPO). Relaxations are sorted on

penalty. Evaluates one query per relaxations. Stops query

evaluation when number of answer exceeds K.

2. Selectivity-based algorithm (SSO). Uses selectivity estimates

to decide which relaxations to encode in a query in order to

generate at least K answers before sending that query (only

once) to the XPath and IR engines.

3. Hybrid: Join evaluation requires sorting intermediate answers

on their ids while pruning intermediate answers requires their

sorting on scores. Fundamental tension between these two sort

orders.

62

'

&

$

%

Join Plans for Q1, Q3 and Q5

article section

algorithm

paragraph

c (section, paragraph)

c (section, algorithm)

c (article, section)
algorithm

paragraph

c (section, paragraph)

c (section, algorithm)

c (article, section)

article sectionarticle section

c (section, paragraph)

c (article, section)

paragraph

algorithm

if not (c (section, algorithm))
d (article, algorithm)

c (section, algorithm) or

Join Plan for Q1 Join Plan for Q3 Join Plan for Q5

63

'

&

$

%

Related Work

• In IR, CAS approaches include ELIXIR, XIRQL and

JuruXML. Allow limited XPath queries ad focus on a vague

matching of limited XPath predicates and on designing specific

indices to score document fragments.

• Relaxations on structure defined by [Delobel and Rousset’02]:

unfold node, delete node, propagate condition at a node to its

parent, [Schlieder’02] and [Fuhr’00]: generalize datatypes,

ontologies on elements, edit distance on paths, delete node,

insert intermediate nodes and rename node.

• SSO is similar to works that use statistical information to map

top-K relational queries into selection predicates.

64

'

&

$

%

Summary of TeXQuery, PIX and FleXPath

1. Language for full-text search in XML based on a formal

semantics (WWW 2004 paper and SIGMOD 2004

demonstration).

2. Efficient indices and algorithms to evaluate one FTSelection:

phrase matching in XML (SIGMOD 2003 demonstration).

3. Formal framework for approximating queries on structure in

order to view queries on structure as a template for keyword

search (SIGMOD 2004 paper) and efficient algorithms for

answering top-K queries.

65

'

&

$

%

Open Research Problems

• Indices and algorithms: IR techniques to evaluate other

FTSelections, and context modifiers efficiently.

• Scoring and ranking: Generalize TF*IDF measure from IR

to account for document structure.

• Combining structure and text: Evaluate structure-first or

keyword-first or interleave and its impact on scoring.

• Pipelining of FullMatch evaluation: materialize only

necessary matches – impact on scoring.

• Top-K algorithms: Computing approximate answers

motivates the need for adaptive query evaluation strategies.

66

'

&

$

%

PIX/TeXQuery References

• TeXQuery language and semantics presented at WWW 2004.

• TeXQuery demo presented at SIGMOD 2004 (built on top of

Quark). Demo today built on top of Galax.

• http://www.research.att.com/̃sihem/TeXQuery/

• PIX demo presented at ICDE 2003 and SIGMOD 2003.

• PIX algorithm published in VLDB 2003. Demo today built on

top of Galax.

• http://www.research.att.com/̃sihem/PIX/

67

'

&

$

%

Bibliography

• S. Amer-Yahia, C. Botev, J. Robie and J. Shanmugasundaram. TeXQuery: A Full-Text
Search Extension to XQuery. WWW 2004.

• S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. EDBT 2002.

• S. Amer-Yahia, Mary Fernàndez, Divesh Srivastava and Yu Xu. Phrase Matching in XML.
VLDB 2003.

• J. Bosak. The plays of Shakespeare in XML.
http://www.oasis-open.org/cover/bosakShakespeare200.html

• J. M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document and Data Retrieval.
WebDB 2002.

• E. W. Brown. Fast Evaluation of Structured Queries for Information Retrieval. SIGIR
1995.

• N. Bruno et al. Top-K Selection Queries Over Relational Databases: Mapping Strategies
and Performance Evaluation. ACM TODS, 27(2), 2002.

• D. Carmel et al. Searching XML Documents via XML Fragments (JuruXML). SIGIR
2003.

68

'

&

$

%

• T. Chinenyanga and N. Kushmerick. An expressive and efficient language for XML
information retrieval. Ed. R. Baeza-Yates et al., ASIST 2002 (Special issue on XML and
IR).

• T. T. Chinenyanga and N. Kushmerick. Expressive and Efficient Ranked Querying of
XML Data (ELIXIR). WebDB 2001.

• W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. SIGMOD 1998.

• S. Cohen et al. XSEarch: A Semantic Search Engine for XML. VLDB 2003.

• E. Damiani et al. The APPROXML Tool Demonstration. EDBT 2002.

• E. Damiani and L. Tanca: Blind Queries to XML Data. DEXA 2000.

• DBLP in XML.
http://dblp.uni-trier.de/xml/

• C. Delobel and M.C. Rousset. A Uniform Approach for Querying Large Tree-structured
Data through a Mediated Schema. International Workshop on Foundations of Models for
Information Integration (FMII-2001).

• D. Florescu, I. Manolescu, and D. Kossmann. Integrating keyword search into XML query
processing. WWW 2000.

69

'

&

$

%

• N. Fuhr and K. Grossjohann. XIRQL: An extension of XQL for information retrieval.
SIGIR 2000 Workshop on XML and IR.

• N. Fuhr, T. Rlleke. HySpirit a Probabilistic Inference Engine for Hypermedia Re- trieval
in Large Databases. EDBT 1998.

• L. Guo et al. XRANK: Ranked Keyword Search over XML Documents. SIGMOD 2003.

• Y. Hayashi, J. Tomita, and G. Kikui. Searching Text-rich XML Documents with
Relevance Ranking. SIGIR 2000 Workshop on XML and IR.

• M. J. Healey et al. Precise environmental searches: EnviroDaemon with hierarchical
information search. Environmental Quality Management, 1999.

• V. Hristidis et al. PREFER: A system for the Efficient Execution Of Multiparametric
Ranked Queries. SIGMOD 2001.

• Initiative for the Evaluation of XML Retrieval.
http://www.is.informatik.uni-duisburg.de/projects/inex03/

• Y. Kanza et al. Queries with incomplete answers over semistructured data. PODS 1999.

• Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. PODS 2001.

• P. Kilpelainen. Tree Matching Problems with Applications to Structured Text Databases.
PhD thesis, University of Helsinki, Finland, November 1992.

70

'

&

$

%

• The Library of Congress.

http://lcweb.loc.gov/crsinfo/xml/

• J. Naughton, et al. The Niagara Internet Query System. IEEE Data Engineering Bulletin

24(2), 2001.

• M. Rys. Full-Text Search with XQuery: A Status Report. In Intelligent Search on XML,

Springer-Verlag, 2003.

• G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,

New York, 1983.

• T. Schlieder. Schema-Driven Evaluation of Approximate Tree-Pattern Queries. EDBT

2002.

• D. Shasha, K. Zhang, and J. Wang. TreeSearch: Searching among unordered trees,

February 2001. http://cs.nyu.edu/cs/faculty/shasha/papers/treesearch.html

• Sigmod Record in XML.

http://www.acm.org/sigmod/record/xml/

• A. Theobald and G. Weikum. Adding relevance to XML. WebDB 2000.

• H. Turtle, B. Croft. Inference Networks for Document Retrieval. SIGIR 1990.

71

'

&

$

%

• J. E. Wol , H. Fl orke, and A. B. Cremers. XPRES: a ranking approach to retrieval on

structured documents. Technical Report IAI-TR-99-12, University of Bonn, July 1999.

• The World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text. W3C Working

Draft.

http://www.w3.org/TR/xquery-full-text/

• The World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text Use Cases. W3C

Working Draft.

http://www.w3.org/TR/xmlquery-full-text-use-cases/

• The World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text Requirements.

W3C Working Draft.

http://www.w3.org/TR/xmlquery-full-text-requirements/

72

